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Analytical results for the steady state of traffic flow models with stochastic delay
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Exact mean field equations are derived analytically to give the fundamental diagrams, i.e., the average
speed-car density relations, for the Fukui-Ishibashi one-dimensional traffic flow cellular automaton model of
high speed vehiclesv(,,,=M>1) with stochastic delay. Starting with the basic equation describing the time
evolution of the number of empty sites in front of each car, the concepts of intercar spacings longer and shorter
thanM are introduced. The probabilities of having long and short spacings on the road are calculated. For high
car densities 4=1/M), it is shown that intercar spacings longer tHdrwill be shortened as the traffic flow
evolves in time, and any initial configurations approach a steady state in which all the intercar spacings are of
the short type. Similarly for low car densitiep£1/M), it can be shown that traffic flow approaches an
asymptotic steady state in which all the intercar spacings are longeMhaR. The average traffic speed is
then obtained analytically as a function of car density in the asymptotic steady state. The fundamental diagram
so obtained is in excellent agreement with simulation d&84063-651X98)04709-9

PACS numbe(s): 64.60.Ak, 05.40+], 05.70.Jk, 89.40:-k

[. INTRODUCTION boundary condition. Each of tHe sites can either be empty
or occupied by one vehicle. Lédl be the total number of
Recently, there has been much interest in studying trafficars, then the average vehicle density on the roag is
flow problems within the context of cellular automat@A) =N/L. The cars move from the left to the right according to
models [1-4]. Compared with the fluid dynamical ap- the following rules. All the cars attempt a move of one step
proaches to traffic flow problems, the CA models are conto the right simultaneously at each time step. If the site in
ceptually simpler, and can be readily implemented on comfront of a car is not occupied at that time step, the car moves
puters. These models capture the complexity of the nonlineayne site ahead. Otherwise, the car cannot move. This simple
character of the problem and provide clear physical picturesnodel predicts a transition from laminar traffic flow to start-
[2,5-7). For example, CA models show the existence of astop wave as the car density increases.
transition between a moving phase and a jamming phase in There are many variations on the basic model. Nagel and
the traffic of a city as the car density is varipd. These SchreckenberdNS) considered the effects of acceleration
models also have the advantages that they can be easiynd stochastic delay of vehicles with high spg¢8d.3]. In
modified to deal with the effects of different kinds of realis- the NS model, a car can move at mostMysites in a time
tic conditions, such as road blocks and hindrances, traffistep. The actual speed at a time step depends on the spacing
accidentg 8], highway junctiong9], overpassekl0], vehicle in front. If the speed in the present time step is less than
acceleratior11], quenched disordernefk2], stochastic de- and the spacing ahead allows, then the speed increases by
lay due to driver's reactionfsl3], anisotropy of car distribu- one unit in the next time step. If the spacing ahead is less
tions in different driving direction§14], faulty traffic lights  than the speed in the present time step, then the speed is
[15], etc. Recently, CA models have been successfully apreduced to the value allowed by the spacing, and thus leads
plied to study traffic flow in a city by performing high speed to a deceleration. In addition, there is a probability that the
simulations on the actual road map of the city of DaJlé].  speed of a car is reduced by one unit in the next time step.
In view of the increasing importance of CA models in study- Thus the NS model captures the features of gradual accelera-
ing traffic flow problems, it is thus important to understandtion, deceleration, and randomization in realistic traffic
these models in more detalil, especially from the point offlows.
view of statistical mechanics and nonlinear dynamics. Fukui and IshibashiFl) introduced another variation on
The basic one-dimensionélD) CA model for highway the basic mod€l17] in which the cars can move by at most
traffic flow [3,13] is the CA rule 184[1]. This model de- M sites in one time step if they are not blocked by cars
scribes single-lane traffic on a road of lengthvith periodic  in front. More precisely, if the number of empty sit€sin
front of a car is larger thaM at timet, then it can move
forwardM (M —1) sites in the next time step with probabil-
* Author to whom correspondence should be addressed. Electronity 1 —f (f ). Here, the probability represents the degree of
address: pmhui@phy.cuhk.edu.hk stochastic delay. The=0 model is referred to as the deter-

1063-651X/98/583)/28767)/$15.00 PRE 58 2876 © 1998 The American Physical Society



PRE 58 ANALYTICAL RESULTS FOR THE STEADY STATE & . .. 2877

ministic FI model, while thé =1 case is the deterministic FI cently for the FI mode[28—-30. The idea is similar to the
model with the maximum speed,,,=M—1. If C<M at car-oriented mean field theof€OMF) [22]. In Ref.[30], we
timet, then the car can only move Ilfysites in the next time  studied the deterministic FI model for arbitralvyand found
step. The FI model differs from the NS model in that thethat the intercar spacings self-organize themselves into either
increase in speed may not be gradual and stochastic deldyng or short spacings in the steady state depending on the
only applies to the high speed cars. Obviously, the two modear density on the road. The fundamental diagram so ob-
els are identical foM =1. tained is in exact agreement with simulations. In this paper,
Fukui and Ishibashi have performed numerical simula-we generalize this approach to study FI model with arbitrary
tions on the modd]l17]. The focus in traffic flow problems is M and arbitrary degree of stochastic defayVe are able to
the so called fundamental diagram, which is the relationshiglerive a general expression for the average car speed in the
between the average speed in the steady state and the cieady state as a function ™ and f that is in excellent
density[18]. While numerical simulations provide us with agreement with numerical data.
accurate fundamental diagrams, it is desirable and useful to The plan of the paper is as follows. In Sec. I, we present
have a better qualitative understanding of the numerical rethe basic evolution equation for the intercar spacings. The
sults within some analytic approaches such as mean fieldoncepts of long and short spacings are introduced. The av-
theories. Numerical studies and mean field theories haverage speed is expressed in terms of the probabilities of find-
been extremely useful in providing detailed understanding iring long and short spacings. Section Il gives a detailed dis-
phase transitions and critical phenomena in equilibrium stacussion of how the intercar spacings evolve in time
tistical mechanics, and we foresee that they will be equallyaccording to the intercar spacing of the car in front. Using
useful in the study of dynamical systems such as the CAhe results in Sec. lll, Sec. IV gives the steady state result in
traffic flow models. the high car density regime. It is argued that all the spacings
Various mean field theories have been proposed for traffievolve into short spacings in the steady state. In Sec. V, we
flow models in 2D[10,14,19-21and 1D[13,17,22—-30 In  derive the average speed in the low density regime using the
1D, mean field approaches giving results in exact agreemeidea of detailed balance. Results are discussed in Sec. VI and
with simulations have been given for the NS mofie8,22] compared with numerical data fol=2 and M =3 with
with M=1 and for the deterministic FI modgl7]. In 2D,  arbitrary degree of stochastic delay. The extension of the
mean field theories have been propoEHe14,20,2] for the  present approach to other traffic flow problems is also dis-
model introduced by Biharet al.[4] (BML model). Most of ~ cussed.
the mean field approaches are macroscopic theories in that

the consideration is based on the idea that the average duray, THE DEPENDENCE OF AVERAGE TRAFFIC SPEED

tion that a car stays on a site, while depending on the speed ON INTERCAR SPACINGS
of the cars, determines the blockage on the car behind it and o
thus, in turn, determines the average speed. Let C,(t) be the number of empty sites in front of théh

Recently, the steady state of CA traffic flow models hascar at timet. It is also the distance between thth car and
been studied within statistical mechanical approad@s-  the (n+1)th car. The average distance between neighboring
27]. While these studies are also mean field in nature, thears can be represented y=(L—N)/N=1/p—1. Let
approaches are based wricroscopicconsideration focusing v ,(t) be the number of sites that théh car moves during an
on the time evolution of the occupancy on each site of thaipdate at the time, i.e., the update between timeand t
road. A nonlinear mapping between the macroscopic average 1. The number of empty sites in front of théh car at time
speeds at two consecutive time steps can then be derived by 1 is
carrying out suitable statistical averages on the microscopic
relations. The stable fixed point of the mapping gives the Cht+1)=C,(t)tvps1(t)—vy(1). (1)
steady state average speed as a function of car density. For
the deterministic FI model, results in exact agreement with Within the generalized FI traffic flow model with the
numerical data have been obtair{@®,27], while for the FI  maximum car velocity ,,,=M and a stochastic delay prob-
model with delay, the microscopic approach gives results irability f, the relationship between the velocity of thtéh car
good agreement with simulations. Such microscopic theorand the intercar spacing ahead at titris
has the advantage that it provides a systematic approach for
the derivation of mean field results for the steady state. vo(H)=Fnu(f,Ch(1)), 2

An alternative microscopic approach based on the time
evolution of intercar spacings has also been proposed ravhere

O

Fu(f,C)=4 M—1 (with probability f) if C=M ©)
M (with probability 1-f ) if C=M.

The average speed at timés
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1 N —C,()=C,+1()=<M-1. For Eq.(7), we introduce a stochas-
V(t)=< 2 vn(t) tic Boolean variabled,(f ) describing the stochastic delay of
N =1 the nth car with probabilityf:
1 1, with probability f
== Cn(tH)+ M—-f);. 4 ="
N Cn(t)zM—l nt) CngzM M=T)r. @ On(f)=)0, with probability 1—*. (8)

The sums in Eq(4) correspond to sums over two different It then follows from Egs(1)—(3) that for C,(t)<M—1 and
types of car spacings. An intercar spacing is labeled a lon&n+1()=M,
spa_lcing if it consists QM or more sites, i.e., iCn(_t)B_l\/_I, Co(t+1)=(M—=1)0,,1(f )+ M8, (1), (9
while an intercar spacing is labeled a short spacing if it con-
sists ofM—1 or fewer sites, i.e.C (t)<M—1. LetN,,(t)  and hence Eq7).
be the number of cars at tirewith m empty sites ahead. ~ Suppose the spacing of theth car islong, i.e., Cy(t)
The probability that a car is found to have a spacingrof =M. If C,,1(t)<M—1, then
sites ahea_d is given b?m(t_):Nm(_t)/N: The number of C(t) with probability f
long spacingsNigng(t) at time t is given by Nig,q(t) Ch(D)sC,(t+ 1)${C ()—1 with probability 1—f
=3 =mNm(t), and the number of short spacingg.,(t) at n P y '
time t is given by Ngno(t)==M_IN(t). The probability (10
Plong(t) Of an intercar spacing belonging to a long spacing islf Cy+1(t)=M, then
P|0ng(t)=N|0_ng(t)/N, Wh@le the probabilityPshor(_t) of an in- 1, with probability f(1—f )
tercar spacing belonging to a short spacing Fg,{t) . P 2
=Ngnhor(t)/N. Thus, the average car speed in E&).can be Co(t+1)=Cn(t)+ { 0, W!th probab!l!ty PP+ (1-1)
expressed in terms d?,(t) as —1, with probability f(1—f).
Vo1 (11
_ The proof of Eq.(10) goes as follows. It follows from Egs.
V(D)= 2 mPr(t)+ (M= )Piong(1). ®) (1)—(2) that for(g:n(t)ng andC,. ()=M—1, |

Cn(t+1)=Ch(1) + Cpya(D)
~[(M=1)6,(f )+Mb,(1-F)]. (12

Ill. TIME EVOLUTION OF INTERCAR SPACINGS

For the FI traffic flow model with stochastic delay, the
intercar spacings evolve in time in the following ways de-Since Cn(t)=M, C(t+1)=Cp.4(t). For Cyi(t)<M
pending on whether the spacing is short or lemgion the —1,
nature of the intercar spacing of the car in front. Suppose the _ _ i _
spacing of thenth car is short ie., C(t)<M—1. If Cot 1O =LM=1)6n(T )+ M (11 )]
Chi1(t)sSM—1, then <[0, with probability f

Co(t+1)=Cpp. () <M —1. ©) —1, with probability 1—f.
Hence Eq(12) implies
If C+1(t)=M, then
. N c (t+1)<[C“(t) with probability f
Co(t+1)= M-—1, .wnh probgl_)lllty_f @ n | Ch(t)—1 with probability 1—f,
M, with probability 1—f.

and Eq.(10) is proven.
Equation(6) follows from Egs.(1)—(3) that for C,(t)<M For Eqg. (11), from Egs. (1)—(3) and the conditions
-1 and C,1(t)=sM-1, C,(t+1)=C,(t)+C,.4(1) C,(t)=M andC,,,1(t)=M, we have

Cn(t+l):Cn(t)+[(M_1)0n+1(f )"_'\/IenJrl(l_f )]_[(M_l)an(f )+M0n(1_f )]
=Cr() +[M O 1(1—F )= (M=1)0,(f )]+ [(M—=1)0ns1(f )= (M—=1)6,(f )]
FIMO(1—F)=MOy(1—=F )]+[(M=1)6ns2(f ) =MO (11 )]

1, with probability f(1—f )
=C,(t)+4 0,  with probability f?+(1—f )2 (13)
—1, with probability f(1—f),

which is Eq.(11). IV. HIGH DENSITY CASE

Equations(6), (7), (10), and(11) give the time evolution
of C,(t). Coupled with Eq.(4) or Eqg. (5) gives the time For high car densitiesp=1/M), the average intercar
evolution of the average speedf(t) and hence the spacing satisfie€=1/p—1<M —1. It can be argued that in
asymptotic limit can be studied. the asymptotic steady state of traffic flow, all intercar spac-
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ings become short spacings, i.e., It follows that P\,,q=1—Py_41, and the average speed in
the steady statfEq. (5)] can be written as
C,()<sM—-1 Vn. (14)
V=(M-1)Py_1+(M—f )Plong

From Eq.(6), if every spacing is shorter thavl, then
q.(6) y spacing —(M—=f)—(1—f )Py_;. (19

Ca(tF1)=Cnsa(t) V¥, (15 Thus the problem of findiny amounts to obtainin@y, _ in

the asymptotic limit.
To obtainP; in the steady state, we introdubg_,;-; to
: .Hescribe the number of intercar spacings with their lengths
hanged frony at timet to j = 1 at timet+ 1. The probability
f finding an intercar spacing with lengihat timet and
lengthj =1 at timet+1 is

which implies that the spacing in front of theh car att

the numbering of cars. Therefore, the situation correspondin
to all the spacings being short is a steady state. Since

L—N=2, C,(t)<(M—1)N, Wi 1(0)=Nj_j=2()/N=[N;(t)/NJ[N;_;+1(t)/N; (1) ].
n (20

the condition in Eq(15) holds forp=1/M. Under this con- From Eqs.(6) and(7), we have

dition, the average speédis simply the number of empty _
sites divided by the total number of cars: Ny-1-m(t)/Ny-1(t)=(1=f )(Py+Pyi1+--), o1
L-N 1
V===, 1 for p=1M. (169 and

Wy -1-m(1)=(1=f )Py _1Piong- (22)

The time evolution ofC,(t) [Egs. (6), (7), (10), (11)] o
ensures that fop=1/M the steady state in which all intercar Similarly, from Eqs.(10) and(11), we have
spacings are short spacings is approached asymptotieally N (1)/Ny (1) =(1—f )P
gardlessof the initial state of the traffic flow. The proof has M=M-1 M M-1
been giver{29,3Q for the deterministic FI model with arbi- (1= )f(Py+Pysrt ),
trary v max=M. While a similar proof can be given, we sim-
ply note that the stochastic delay becomes ineffective at high
car densities and the system behaves increasingly as a detgﬁd
ministic model in the high density regime. Moreover, the
proof in Refs.[29, 30 works both for the deterministic Wi—m_ 1()=(1—f )Py(Py_1+fPon). (24
model corresponding td=0 and for the totally delayed
model with f=1 corresponding to a deterministic model  For W,_,;., with j>M, Eq. (12) states that foiC(t)
with M —1. The existence of stochastic delays will only af- =j>M andC,.,(t)=M—1,
fect the time for the traffic to approach the asymptotic limit
from its initial configuration, but not the nature of the Cp(t+1)=j+M—-1-[(M—=1)6,(f )+ME(1-1)]

asymptotic steady state. . .
ymp Y = 0n(F )+ (1~ 1) (1T ). (25

(23

V. LOW DENSITY CASE Similarly for C,(t)=j>M andC,, 1(t)=M, Eq.(13) gives

. For low ca}r dgﬂsitieSp(sllM) and M=2, the average Ch(t+1)=j+[(M=1)6,1(f )+ MO, 1(1—F)]
intercar spacing i€=1/p—1=M—1. It can be shown that

in the asymptotic steady state, every spacing will not be —[(M=1)6,(f )+ M6, (1—F )]

shorter thar =1, L. = (=101~ ) O (F )+ (+1)0(1)
C()=M=1 Vn (17 X Oia(1= £ ) FJ00n(F ) s a(F)

or equivalently,Ng=N;="---=Ny_,=0, whereN,, is the T O0n(1—=1)0n:1(1—1F)]. (26)

number of cars withm empty sites ahead. For the determin-

istic FI model withv ,,.,=M, it has been provef80] that the ~ Hence
steady state correspondin t)=M for all n in the low
car d)énsity regimepwitrpgs?z(;,:aerl):l/(M +1) is ap- Nj—j—2(O/N;(O) = (1= T [Py +F(Py+ Py o),
proached after a finite period of time. As both the0 and (27)
f=1 limits of the generalized FI model correspond to deter-ynq

ministic FI models withv ,,,=M and v ,,=M—1, respec-

tively, the inequality in(17) holds. Thus, in the steady state, Njjr1(O/Nj(O)=F(1—F )(Py+Pyigt---). (28

Po=P;=---=Py_»,=0. (18  The probabilitiesV;_, ;. 1(t) are then given by



2880 BING-HONG WANG, LEI WANG, P. M. HUI, AND BAMBI HU PRE 58

Wi _j—1()=(1=f )Pj(Py_1+fPing), j>M (29 Together with the equality

and 1 o
C==-1= > P, (35)
Wi_+1()=f(1=f )P;Piong, J>M. (30 p =
_ The asymptotic steady state should satisfy the condltlonal e obtain

given by

Wii— 1 m(D) =Wy 1), o Cf(1-a)? -

. (31) M1 024+ Ma(l—a)+(M—1)f(1—a)?
Wjﬁj_l(t)=Wj_1_,j(t), j>M

Substituting Egs(22), (24), (29), and(30), we obtain Substituting Eq(33) for the constant, we arrive at a qua-

dratic equation
PM 1_ PM*l

Pu_i f+(1—f )Py

(32) 2 ~
(1-f )P, _,+(C—M+2f)Py_,—f=0 (37

and
for Py_1, which gives a non-negative root:

P, f(1=Py_y)
Pi-1 Pm_1+f(1-Py_1)

L i>M, (33 _
“ | 33  M-C-2f+(C-M+27 )2+4f(1-1)

. . . Pu-1= 2(1-1) .
wherea is a constant depending only d?),_;. Equations (39)
(32) and (33) imply that

Pu=(al/f )Py_1, Pmi1=aPy,.... P,=a""MPy,. Substituting Eq.(38) for Py, _, back into Eq.(19) for the

(34) average speed in the steady state, we finally obtain

M—C—2f+(C—M+2Ff )2+4f(1—f ) M—1+1p—(llp—1-M+2f )2+4f(1—1)
2 - 2 '
(39

V(t—o)=M—f—

Equations(16) and(39) are the main results of the present work. They give the average speed of cars in the steady state over
the whole range of car densities for arbitrary maximum velocity and degrees of stochastic delays.

VI. DISCUSSION

The fundamental diagram, i.e., the speed-car-density relation, of the FI model with stochastic delay is

[M=—1+1/p—J(Up—1—-M+2f )2+ 4f(1—1)]/2, Osp<1M

Vt==2)=11),-1, IM<p=<1.

(40

The general features of the speed in the steady state are that folyiaed in low density regimeg=<1/M), different values
of f correspond to separate curves, while in the high density regimel(M), the curves corresponding to different values of
f coincide with each other and fall into one curve. The latter feature reflects that stochastic delays become ineffective for
sufficiently large car densities and systems with different valuédehave in the same way. As the car density increases, the
curves for different values dfmeet atp=1/M.

In Ref. [17], numerical results have been reported for ie-2 FI model without good analytic explanations. It is thus
illustrative to compare the present result with numerical simulationsMFe12, our general resu[teq. (40)] reads

[1+p—(9—8f )p?—2(3—2f )p+1]/2p O<p<1/2

Vt==)=11)p-1 12<p=<1.

(41)
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FIG. 1. The fundamental diagram of the Fukui-Ishibashi traffic ~ FIG. 2. The fundamental diagram of the Fukui-Ishibashi traffic
flow model with the maximum car velocityl =2 and for different  flow model with the maximum car velocityl =3 and for different
values of the degree of stochastic defayhe solid curves are the values of the degree of stochastic defafhe solid curves are the
theoretical results in Eq41). The points with different symbols theoretical results in Eq40). The points with different symbols
represent results obtained by numerical simulations. The curvesepresent results obtained by numerical simulations. The curves
from the top down along the average velocity axis correspond tdrom the top down along the average velocity axis correspond to
different values off betweenf=0 to f=1 in step of 0.1. The different values of betweenf=0 andf=1 in step of 0.1.
average speed is the number of sites moved per time step per car.

) _ ) probabilities that a spacing becomes longer and shorter by
In order to compare with the analytic result, we carried outye ynit of length in a time step are calculated. The
numerical simulations on a one-dimensional chain with 100(%1symptotic steady state is obtained by imposing the condi-
cars and the length of the chain was adjusted so as to give thgyy of detailed balance. The general expression for the av-
desired density pf cars. Periodic boundary condition was iMarage speed in the steady state is then obtained analytically
posed. The motion of the cars was followed and the averaggs 5 function of the car density for arbitrary value of the
speed of cars recorded. The first 20 000 time steps were Ngiayimum velocity and arbitrary degree of stochastic delay.

included in the averaging procedure so as to ensure that th@sgits are compared with numerical dataNbe2 andM
system has approached the steady state. The averages werg gyer the whole range of9f<1. Our analytic results
taken over the next 80 000 time steps. Our numerical result§;q in excellent agreement with numerical data.

are consistent with those reported in Réfr]. Figure 1 com- The present approach provides an alternative way to study
pares the analytic results with numerical results for different, a¢fic flow problems analytically. In principle, our approach
values off. Excellent agreement is found. Equati@il) thus ¢4 e extended to study other models in one and two di-
complements the numerical results in R@f7] and provides mensiong3,4,9,10,13,14,21 While it is relatively simple to
an analytic expression for the numerical data. . study the time evolution of car spacings in one-dimensional
To further establish the validity of our result, we carried models, it is nontrivial to extend the present approach to
out numerical simulations for thiel =3 FI model with sto-  {vo-dimensional models. In a 2D model such as the BML
chastic delays and compared results with our general expregsogel[4], the spacings along one direction will be coupled
sion. Results are shown in Fig. 2. Again, it is obvious fromyg the evolution of the spacing in another direction as a group
the figure that the agreement is excellent. In passing, we noig short spacings in one direction will slow down the traffic
that theM =1 results agree well with numerical data. For fioy in the perpendicular direction and hence influence the
M=1, the FI model is identical to the NS model with & car spacings in the other direction. This coupling leads to
maximum velocity of unity and thé/ =1 results reported complicated coupled equations for the probabilities of having
here agree with those reported in the literature for the NJong and short spacings in the two directions. Although more
model for this particular case. complicated than the one-dimensional case, this coupling in
In summary, we derived exact results for the averagqyr |eads to the interesting phenomenon of having a jam-
speed in the asymptotic steady state as a function of the c@fing to moving phase transition at a finite car density. Work

density and the degree of stochastic delay for the Fukuiajong this line is in progress and results will be reported
Ishibashi traffic flow model. The approach is based on thgjsewhere.

study of the time evolution of the intercar spacings. The
notions of long and short intercar spacings are introduced.
The probability of finding a long or short spacing on the road
is then calculated. In the high density regimex(1/M), all B.H.W. acknowledges the support from the Chinese Na-
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