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Analytical results for the steady state of traffic flow models with stochastic delay
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Exact mean field equations are derived analytically to give the fundamental diagrams, i.e., the average
speed-car density relations, for the Fukui-Ishibashi one-dimensional traffic flow cellular automaton model of
high speed vehicles (vmax5M.1) with stochastic delay. Starting with the basic equation describing the time
evolution of the number of empty sites in front of each car, the concepts of intercar spacings longer and shorter
thanM are introduced. The probabilities of having long and short spacings on the road are calculated. For high
car densities (r>1/M ), it is shown that intercar spacings longer thanM will be shortened as the traffic flow
evolves in time, and any initial configurations approach a steady state in which all the intercar spacings are of
the short type. Similarly for low car densities (r<1/M ), it can be shown that traffic flow approaches an
asymptotic steady state in which all the intercar spacings are longer thanM22. The average traffic speed is
then obtained analytically as a function of car density in the asymptotic steady state. The fundamental diagram
so obtained is in excellent agreement with simulation data.@S1063-651X~98!04709-6#

PACS number~s!: 64.60.Ak, 05.40.1j, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Recently, there has been much interest in studying tra
flow problems within the context of cellular automaton~CA!
models @1–4#. Compared with the fluid dynamical ap
proaches to traffic flow problems, the CA models are c
ceptually simpler, and can be readily implemented on co
puters. These models capture the complexity of the nonlin
character of the problem and provide clear physical pictu
@2,5–7#. For example, CA models show the existence o
transition between a moving phase and a jamming phas
the traffic of a city as the car density is varied@4#. These
models also have the advantages that they can be e
modified to deal with the effects of different kinds of reali
tic conditions, such as road blocks and hindrances, tra
accidents@8#, highway junctions@9#, overpasses@10#, vehicle
acceleration@11#, quenched disorderness@12#, stochastic de-
lay due to driver’s reactions@13#, anisotropy of car distribu-
tions in different driving directions@14#, faulty traffic lights
@15#, etc. Recently, CA models have been successfully
plied to study traffic flow in a city by performing high spee
simulations on the actual road map of the city of Dallas@16#.
In view of the increasing importance of CA models in stud
ing traffic flow problems, it is thus important to understa
these models in more detail, especially from the point
view of statistical mechanics and nonlinear dynamics.

The basic one-dimensional~1D! CA model for highway
traffic flow @3,13# is the CA rule 184@1#. This model de-
scribes single-lane traffic on a road of lengthL with periodic

*Author to whom correspondence should be addressed. Electr
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boundary condition. Each of theL sites can either be empt
or occupied by one vehicle. LetN be the total number of
cars, then the average vehicle density on the road ir
5N/L. The cars move from the left to the right according
the following rules. All the cars attempt a move of one st
to the right simultaneously at each time step. If the site
front of a car is not occupied at that time step, the car mo
one site ahead. Otherwise, the car cannot move. This sim
model predicts a transition from laminar traffic flow to sta
stop wave as the car density increases.

There are many variations on the basic model. Nagel
Schreckenberg~NS! considered the effects of acceleratio
and stochastic delay of vehicles with high speed@3,13#. In
the NS model, a car can move at most byM sites in a time
step. The actual speed at a time step depends on the sp
in front. If the speed in the present time step is less thanM
and the spacing ahead allows, then the speed increase
one unit in the next time step. If the spacing ahead is l
than the speed in the present time step, then the spee
reduced to the value allowed by the spacing, and thus le
to a deceleration. In addition, there is a probability that
speed of a car is reduced by one unit in the next time s
Thus the NS model captures the features of gradual acce
tion, deceleration, and randomization in realistic traf
flows.

Fukui and Ishibashi~FI! introduced another variation o
the basic model@17# in which the cars can move by at mo
M sites in one time step if they are not blocked by ca
in front. More precisely, if the number of empty sitesC in
front of a car is larger thanM at time t, then it can move
forward M (M21) sites in the next time step with probabi
ity 12 f ( f ). Here, the probabilityf represents the degree o
stochastic delay. Thef 50 model is referred to as the dete
ic
2876 © 1998 The American Physical Society
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ministic FI model, while thef 51 case is the deterministic F
model with the maximum speedvmax5M21. If C,M at
time t, then the car can only move byC sites in the next time
step. The FI model differs from the NS model in that t
increase in speed may not be gradual and stochastic d
only applies to the high speed cars. Obviously, the two m
els are identical forM51.

Fukui and Ishibashi have performed numerical simu
tions on the model@17#. The focus in traffic flow problems is
the so called fundamental diagram, which is the relations
between the average speed in the steady state and th
density @18#. While numerical simulations provide us wit
accurate fundamental diagrams, it is desirable and usefu
have a better qualitative understanding of the numerical
sults within some analytic approaches such as mean
theories. Numerical studies and mean field theories h
been extremely useful in providing detailed understanding
phase transitions and critical phenomena in equilibrium
tistical mechanics, and we foresee that they will be equ
useful in the study of dynamical systems such as the
traffic flow models.

Various mean field theories have been proposed for tra
flow models in 2D@10,14,19–21# and 1D@13,17,22–30#. In
1D, mean field approaches giving results in exact agreem
with simulations have been given for the NS model@13,22#
with M51 and for the deterministic FI model@17#. In 2D,
mean field theories have been proposed@10,14,20,21# for the
model introduced by Bihamet al. @4# ~BML model!. Most of
the mean field approaches are macroscopic theories in
the consideration is based on the idea that the average d
tion that a car stays on a site, while depending on the sp
of the cars, determines the blockage on the car behind it
thus, in turn, determines the average speed.

Recently, the steady state of CA traffic flow models h
been studied within statistical mechanical approaches@23–
27#. While these studies are also mean field in nature,
approaches are based onmicroscopicconsideration focusing
on the time evolution of the occupancy on each site of
road. A nonlinear mapping between the macroscopic ave
speeds at two consecutive time steps can then be derive
carrying out suitable statistical averages on the microsco
relations. The stable fixed point of the mapping gives
steady state average speed as a function of car density
the deterministic FI model, results in exact agreement w
numerical data have been obtained@26,27#, while for the FI
model with delay, the microscopic approach gives results
good agreement with simulations. Such microscopic the
has the advantage that it provides a systematic approac
the derivation of mean field results for the steady state.

An alternative microscopic approach based on the t
evolution of intercar spacings has also been proposed
lay
-
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cently for the FI model@28–30#. The idea is similar to the
car-oriented mean field theory~COMF! @22#. In Ref.@30#, we
studied the deterministic FI model for arbitraryM and found
that the intercar spacings self-organize themselves into e
long or short spacings in the steady state depending on
car density on the road. The fundamental diagram so
tained is in exact agreement with simulations. In this pap
we generalize this approach to study FI model with arbitr
M and arbitrary degree of stochastic delayf. We are able to
derive a general expression for the average car speed in
steady state as a function ofM and f that is in excellent
agreement with numerical data.

The plan of the paper is as follows. In Sec. II, we pres
the basic evolution equation for the intercar spacings. T
concepts of long and short spacings are introduced. The
erage speed is expressed in terms of the probabilities of fi
ing long and short spacings. Section III gives a detailed d
cussion of how the intercar spacings evolve in tim
according to the intercar spacing of the car in front. Usi
the results in Sec. III, Sec. IV gives the steady state resu
the high car density regime. It is argued that all the spaci
evolve into short spacings in the steady state. In Sec. V,
derive the average speed in the low density regime using
idea of detailed balance. Results are discussed in Sec. VI
compared with numerical data forM52 and M53 with
arbitrary degree of stochastic delay. The extension of
present approach to other traffic flow problems is also d
cussed.

II. THE DEPENDENCE OF AVERAGE TRAFFIC SPEED
ON INTERCAR SPACINGS

Let Cn(t) be the number of empty sites in front of thenth
car at timet. It is also the distance between thenth car and
the (n11)th car. The average distance between neighbo
cars can be represented byC̄[(L2N)/N51/r21. Let
vn(t) be the number of sites that thenth car moves during an
update at the timet, i.e., the update between timet and t
11. The number of empty sites in front of thenth car at time
t11 is

Cn~ t11!5Cn~ t !1vn11~ t !2vn~ t !. ~1!

Within the generalized FI traffic flow model with th
maximum car velocityvmax5M and a stochastic delay prob
ability f, the relationship between the velocity of thenth car
and the intercar spacing ahead at timet is

vn~ t !5FM„f ,Cn~ t !…, ~2!

where
FM~ f ,C!5H C, if C<M21

M21 ~with probability f ! if C>M

M ~with probability 12 f ! if C>M .

~3!

The average speed at timet is



nt
on

on

.

i

e
e

th

-
f

.

2878 PRE 58BING-HONG WANG, LEI WANG, P. M. HUI, AND BAMBI HU
V~ t !5
1

N (
n51

N

vn~ t !

5
1

N H (
Cn~ t !<M21

Cn~ t !1 (
Cn~ t !>M

~M2 f !J . ~4!

The sums in Eq.~4! correspond to sums over two differe
types of car spacings. An intercar spacing is labeled a l
spacing if it consists ofM or more sites, i.e., ifCn(t)>M ,
while an intercar spacing is labeled a short spacing if it c
sists ofM21 or fewer sites, i.e.,Cn(t)<M21. Let Nm(t)
be the number of cars at timet with m empty sites ahead
The probability that a car is found to have a spacing ofm
sites ahead is given byPm(t)5Nm(t)/N. The number of
long spacingsNlong(t) at time t is given by Nlong(t)
5(m>MNm(t), and the number of short spacingsNshort(t) at
time t is given by Nshort(t)5(m50

M21Nm(t). The probability
Plong(t) of an intercar spacing belonging to a long spacing
Plong(t)5Nlong(t)/N, while the probabilityPshort(t) of an in-
tercar spacing belonging to a short spacing isPshort(t)
5Nshort(t)/N. Thus, the average car speed in Eq.~4! can be
expressed in terms ofPm(t) as

V~ t !5 (
m51

M21

mPm~ t !1~M2 f !Plong~ t !. ~5!

III. TIME EVOLUTION OF INTERCAR SPACINGS

For the FI traffic flow model with stochastic delay, th
intercar spacings evolve in time in the following ways d
pending on whether the spacing is short or longand on the
nature of the intercar spacing of the car in front. Suppose
spacing of thenth car is short, i.e., Cn(t)<M21. If
Cn11(t)<M21, then

Cn~ t11!5Cn11~ t !,M21. ~6!

If Cn11(t)>M , then

Cn~ t11!5 H M21,
M ,

with probability f
with probability 12 f . ~7!

Equation~6! follows from Eqs.~1!–~3! that for Cn(t)<M
21 and Cn11(t)<M21, Cn(t11)5Cn(t)1Cn11(t)
g

-

s

-

e

2Cn(t)5Cn11(t)<M21. For Eq.~7!, we introduce a stochas
tic Boolean variableun( f ) describing the stochastic delay o
the nth car with probabilityf:

un~ f ![ H1,
0,

with probability f
with probability 12 f . ~8!

It then follows from Eqs.~1!–~3! that for Cn(t)<M21 and
Cn11(t)>M ,

Cn~ t11!5~M21!un11~ f !1Mun11~12 f !, ~9!

and hence Eq.~7!.
Suppose the spacing of thenth car is long, i.e., Cn(t)

>M . If Cn11(t)<M21, then

Cn11~ t !<Cn~ t11!< HCn~ t !
Cn~ t !21

with probability f
with probability 12 f .

~10!

If Cn11(t)>M , then

Cn~ t11!5Cn~ t !1H 1,
0,
21,

with probability f ~12 f !

with probability f 21~12 f !2

with probability f ~12 f !.

~11!

The proof of Eq.~10! goes as follows. It follows from Eqs
~1!–~3! that for Cn(t)>M andCn11(t)<M21,

Cn~ t11!5Cn~ t !1Cn11~ t !

2@~M21!un~ f !1Mun~12 f !#. ~12!

Since Cn(t)>M , Cn(t11)>Cn11(t). For Cn11(t)<M
21,

Cn11~ t !2@~M21!un~ f !1Mun~12 f !#

< H0,
21,

with probability f
with probability 12 f .

Hence Eq.~12! implies

Cn~ t11!< HCn~ t !
Cn~ t !21

with probability f
with probability 12 f ,

and Eq.~10! is proven.
For Eq. ~11!, from Eqs. ~1!–~3! and the conditions

Cn(t)>M andCn11(t)>M , we have
Cn~ t11!5Cn~ t !1@~M21!un11~ f !1Mun11~12 f !#2@~M21!un~ f !1Mun~12 f !#

5Cn~ t !1@Mun11~12 f !2~M21!un~ f !#1@~M21!un11~ f !2~M21!un~ f !#

1@Mun~12 f !2Mun~12 f !#1@~M21!un11~ f !2Mun~12 f !#

5Cn~ t !1H 1,
0,
21,

with probability f ~12 f !

with probability f 21~12 f !2

with probability f ~12 f !,
~13!
r

ac-
which is Eq.~11!.
Equations~6!, ~7!, ~10!, and~11! give the time evolution

of Cn(t). Coupled with Eq.~4! or Eq. ~5! gives the time
evolution of the average speedV(t) and hence the
asymptotic limit can be studied.
IV. HIGH DENSITY CASE

For high car densities (r>1/M ), the average interca
spacing satisfiesC̄[1/r21<M21. It can be argued that in
the asymptotic steady state of traffic flow, all intercar sp
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ings become short spacings, i.e.,

Cn~ t !<M21 ;n. ~14!

From Eq.~6!, if every spacing is shorter thanM, then

Cn~ t11!5Cn11~ t ! ;n , ~15!

which implies that the spacing in front of thenth car att
11 is simply the spacing of the (n11)th car at timet. Thus
as time increases, the traffic evolves as a continuous sh
the numbering of cars. Therefore, the situation correspond
to all the spacings being short is a steady state. Since

L2N5(
n

Cn~ t !<~M21!N,

the condition in Eq.~15! holds forr>1/M . Under this con-
dition, the average speedV is simply the number of empty
sites divided by the total number of cars:

V5
L2N

N
5

1

r
21 for r>1/M . ~16!

The time evolution ofCn(t) @Eqs. ~6!, ~7!, ~10!, ~11!#
ensures that forr>1/M the steady state in which all interca
spacings are short spacings is approached asymptoticallre-
gardlessof the initial state of the traffic flow. The proof ha
been given@29,30# for the deterministic FI model with arbi
trary vmax5M. While a similar proof can be given, we sim
ply note that the stochastic delay becomes ineffective at h
car densities and the system behaves increasingly as a d
ministic model in the high density regime. Moreover, t
proof in Refs. @29, 30# works both for the deterministic
model corresponding tof 50 and for the totally delayed
model with f 51 corresponding to a deterministic mod
with M21. The existence of stochastic delays will only a
fect the time for the traffic to approach the asymptotic lim
from its initial configuration, but not the nature of th
asymptotic steady state.

V. LOW DENSITY CASE

For low car densities (r<1/M ) and M>2, the average
intercar spacing isC̄51/r21>M21. It can be shown tha
in the asymptotic steady state, every spacing will not
shorter thanM21, i.e.,

Cn~ t !>M21 ;n ~17!

or equivalently,N05N15¯5NM2250, whereNm is the
number of cars withm empty sites ahead. For the determi
istic FI model withvmax5M, it has been proven@30# that the
steady state corresponding toCn(t)>M for all n in the low
car density regime withr<1/(vmax11)51/(M11) is ap-
proached after a finite period of time. As both thef 50 and
f 51 limits of the generalized FI model correspond to det
ministic FI models withvmax5M and vmax5M21, respec-
tively, the inequality in~17! holds. Thus, in the steady stat

P05P15¯5PM2250. ~18!
in
g

h
ter-

t

e

-

It follows that Plong512PM21 , and the average speed
the steady state@Eq. ~5!# can be written as

V5~M21!PM211~M2 f !Plong

5~M2 f !2~12 f !PM21 . ~19!

Thus the problem of findingV amounts to obtainingPM21 in
the asymptotic limit.

To obtainPj in the steady state, we introduceNj→ j 61 to
describe the number of intercar spacings with their leng
changed fromj at timet to j 61 at timet11. The probability
of finding an intercar spacing with lengthj at time t and
length j 61 at timet11 is

Wj→ j 61~ t ![Nj→ j 61~ t !/N5@Nj~ t !/N#@Nj→ j 61~ t !/Nj~ t !#.

~20!

From Eqs.~6! and ~7!, we have

NM21→M~ t !/NM21~ t !5~12 f !~PM1PM111¯ !,
~21!

and

WM21→M~ t !5~12 f !PM21Plong. ~22!

Similarly, from Eqs.~10! and ~11!, we have

NM→M21~ t !/NM~ t !5~12 f !PM21

1~12 f ! f ~PM1PM111¯ !,

~23!

and

WM→M21~ t !5~12 f !PM~PM211 f Plong!. ~24!

For Wj→ j 61 with j .M , Eq. ~12! states that forCn(t)
5 j .M andCn11(t)5M21,

Cn~ t11!5 j 1M212@~M21!un~ f !1Mun~12 f !#

5 j un~ f !1~ j 21!un~12 f !. ~25!

Similarly for Cn(t)5 j .M andCn11(t)>M , Eq. ~13! gives

Cn~ t11!5 j 1@~M21!un11~ f !1Mun11~12 f !#

2@~M21!un~ f !1Mun~12 f !#

5~ j 21!un~12 f !un11~ f !1~ j 11!un~ f !

3un11~12 f !1 j @un~ f !un11~ f !

1un~12 f !un11~12 f !#. ~26!

Hence

Nj→ j 21~ t !/Nj~ t !5~12 f !@PM211 f ~PM1PM111¯ !#,

~27!

and

Nj→ j 11~ t !/Nj~ t !5 f ~12 f !~PM1PM111••• !. ~28!

The probabilitiesWj→ j 61(t) are then given by
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Wj→ j 21~ t !5~12 f !Pj~PM211 f Plong!, j .M ~29!

and

Wj→ j 11~ t !5 f ~12 f !Pj Plong, j .M . ~30!

The asymptotic steady state should satisfy the conditi
given by

WM21→M~ t !5WM→M21~ t !,
~31!

Wj→ j 21~ t !5Wj 21→ j~ t !, j .M .

Substituting Eqs.~22!, ~24!, ~29!, and~30!, we obtain

PM

PM21
5

12PM21

f 1~12 f !PM21
, ~32!

and

Pj

Pj 21
5

f ~12PM21!

PM211 f ~12PM21!
[a, j .M , ~33!

wherea is a constant depending only onPM21 . Equations
~32! and ~33! imply that

PM5~a/ f !PM21 , PM115aPM ,..., Pn5an2MPM .

~34!
s

Together with the equality

C̄5
1

r
215 (

j 5M21

`

jP j , ~35!

we obtain

PM215
C̄f ~12a!2

a21Ma~12a!1~M21! f ~12a!2 . ~36!

Substituting Eq.~33! for the constanta, we arrive at a qua-
dratic equation

~12 f !PM21
2 1~C̄2M12 f !PM212 f 50 ~37!

for PM21 , which gives a non-negative root:

PM215
M2C̄22 f 1A~C̄2M12 f !214 f ~12 f !

2~12 f !
.

~38!

Substituting Eq.~38! for PM21 back into Eq.~19! for the
average speed in the steady state, we finally obtain
ate over

of
ctive for
, the

us
V~ t→`!5M2 f 2
M2C̄22 f 1A~C̄2M12 f !214 f ~12 f !

2
5

M2111/r2A~1/r212M12 f !214 f ~12 f !

2
.

~39!

Equations~16! and~39! are the main results of the present work. They give the average speed of cars in the steady st
the whole range of car densities for arbitrary maximum velocity and degrees of stochastic delays.

VI. DISCUSSION

The fundamental diagram, i.e., the speed-car-density relation, of the FI model with stochastic delay is

V~ t→`!5 H @M2111/r2A~1/r212M12 f !214 f ~12 f !#/2,
1/r21,

0<r<1/M
1/M<r<1. ~40!

The general features of the speed in the steady state are that for givenM and in low density regime (r<1/M ), different values
of f correspond to separate curves, while in the high density regime (r>1/M ), the curves corresponding to different values
f coincide with each other and fall into one curve. The latter feature reflects that stochastic delays become ineffe
sufficiently large car densities and systems with different values off behave in the same way. As the car density increases
curves for different values off meet atr51/M .

In Ref. @17#, numerical results have been reported for theM52 FI model without good analytic explanations. It is th
illustrative to compare the present result with numerical simulations. ForM52, our general result@Eq. ~40!# reads

V~ t→`!5 H @11r2A~928 f !r222~322 f !r11#/2r
1/r21

0<r<1/2
1/2<r<1. ~41!
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In order to compare with the analytic result, we carried o
numerical simulations on a one-dimensional chain with 10
cars and the length of the chain was adjusted so as to give
desired density of cars. Periodic boundary condition was
posed. The motion of the cars was followed and the aver
speed of cars recorded. The first 20 000 time steps were
included in the averaging procedure so as to ensure tha
system has approached the steady state. The averages
taken over the next 80 000 time steps. Our numerical res
are consistent with those reported in Ref.@17#. Figure 1 com-
pares the analytic results with numerical results for differ
values off. Excellent agreement is found. Equation~41! thus
complements the numerical results in Ref.@17# and provides
an analytic expression for the numerical data.

To further establish the validity of our result, we carrie
out numerical simulations for theM53 FI model with sto-
chastic delays and compared results with our general exp
sion. Results are shown in Fig. 2. Again, it is obvious fro
the figure that the agreement is excellent. In passing, we
that theM51 results agree well with numerical data. F
M51, the FI model is identical to the NS model with
maximum velocity of unity and theM51 results reported
here agree with those reported in the literature for the
model for this particular case.

In summary, we derived exact results for the avera
speed in the asymptotic steady state as a function of the
density and the degree of stochastic delay for the Fu
Ishibashi traffic flow model. The approach is based on
study of the time evolution of the intercar spacings. T
notions of long and short intercar spacings are introduc
The probability of finding a long or short spacing on the ro
is then calculated. In the high density regime (r>1/M ), all
intercar spacings will become short spacings in the ste
state, while in low density regime (r<1/M ), all intercar
spacings will be longer than or equal to lengthM21. The

FIG. 1. The fundamental diagram of the Fukui-Ishibashi tra
flow model with the maximum car velocityM52 and for different
values of the degree of stochastic delayf. The solid curves are the
theoretical results in Eq.~41!. The points with different symbols
represent results obtained by numerical simulations. The cu
from the top down along the average velocity axis correspond
different values off between f 50 to f 51 in step of 0.1. The
average speed is the number of sites moved per time step per
t
0
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ge
ot
he
ere

lts
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te
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e
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e
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y

probabilities that a spacing becomes longer and shorte
one unit of length in a time step are calculated. T
asymptotic steady state is obtained by imposing the co
tion of detailed balance. The general expression for the
erage speed in the steady state is then obtained analyti
as a function of the car density for arbitrary value of t
maximum velocity and arbitrary degree of stochastic del
Results are compared with numerical data forM52 andM
53 over the whole range of 0< f <1. Our analytic results
are in excellent agreement with numerical data.

The present approach provides an alternative way to st
traffic flow problems analytically. In principle, our approac
can be extended to study other models in one and two
mensions@3,4,9,10,13,14,21#. While it is relatively simple to
study the time evolution of car spacings in one-dimensio
models, it is nontrivial to extend the present approach
two-dimensional models. In a 2D model such as the BM
model @4#, the spacings along one direction will be coupl
to the evolution of the spacing in another direction as a gro
of short spacings in one direction will slow down the traffi
flow in the perpendicular direction and hence influence
car spacings in the other direction. This coupling leads
complicated coupled equations for the probabilities of hav
long and short spacings in the two directions. Although m
complicated than the one-dimensional case, this couplin
turn leads to the interesting phenomenon of having a ja
ming to moving phase transition at a finite car density. Wo
along this line is in progress and results will be report
elsewhere.
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